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Abstract— When developing path tracking controllers for
autonomous vehicles the dynamic constraints of the vehicle
are a critical factor. It is therefore necessaryto ensure that
all tracking trajectories producedby the controller are smooth
and continuous. In this paper, a path tracking controller is
proposed and implemented on an experimental autonomous
vehicle. This tracking method decouples the low-level heading
and steering control of the vehicle fr om the main tracking
controller, therefore requiring lessvehiclecharacterization. The
resultsof this paper will show this method yields a RMS 0.25m
cross-track error with little to no vehicle characterization.

I . INTRODUCTION

With the recentactivity in autonomousvehicle develop-
ment at the DARPA Urban Challenge,many researchers
([10], [11], [12]) are focusing on developing robust path
tracking controllers. These controllers either are part of
the path planningor incorporatethe low-level steering and
speedcontrollers.Both approachesrequireextensive vehicle
characterization,[2], andrepeatedcalibrationrunsto ensure
stability and accuracy. Additionally most of the control
modelsfor wheeledmobile robots and car-like vehiclesare
basedaroundthe bicycle modelwhich doesnot accountfor
tire slippage,suspensionstiffness,enginethrottle delay, etc.

In this paperthe tracking controller is treatedseparately
from the headingand speedcontroller of the vehicle. This
pushesthe vehicle characterizationinto the low level con-
troller sothatthevehicledynamicscanbemodeledusing the
bicyclemodel.Thisallows for simpli�ed implementationand
testingof the trackingalgorithm.For example, adoptingthe
currenttrackingalgorithmfor driving the vehicle in reverse
requiresminimal changesto the algorithm itself; whereas
carefulcharacterizationof thereversesteeringcharacteristics
are requiredfor previously cited methods.

II . THE PATH TRACKING PROBLEM

A. ProblemDescription

Given a planar two dimensionaltrajectory composed of
discreteGPS waypoints,the path follower is de�ned as a
modulewhich commandsthe vehicleto follow the speci�ed
pathwith someprede�nedtrackingaccuracy andpassenger
comfort. Given the uncertaintiesexhibited by the envi-
ronment (uneven pavements,slippage,etc.) and nonlinear
responsebehaviors of an under-characterized autonomous
vehicle,a robustpathfollowermustbeableto tracksmoothly
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andconsistentlyto the target trajectory. Throughrobustpath
tracking,the gap betweenhigh-level pathplanningandlow-
level hardwarecontrol of an autonomousvehicle is bridged.

1) Coordinate System: The body frame coordinates,
shown in Fig.1, is a right handed coordinatesystem with
y-axis pointing forward and z-axis pointing upwards. The
rotationaldegreesof freedomsadheresto the right-handrule
with the exception of the yaw angle. Where yaw is left-
handedwith respectto thez-axissoit hasthesamerotational
directionastheheading conventionwhere0� correspondsto
north and90� correspondsto east.

Fig. 1. Body FrameAxis System:x; y and z axis of the vehicle's body
frame,with rotationaldegreesof freedom,pitch, roll andyaw.

III . CONTROL DESIGN

A. GoverningEquations

In order to track smoothly to a given trajectory, a path
mustbe computedfrom a given initial locationand heading
to sometarget point and headingon the desiredtrajectory,
Fig. 2.

The in-line, cross-track,and headingerrors, (ex ; ey ; e� )
aregiven by

ex = (x t � xc)cos(� t ) + (yt � yc)sin(� t ) (1)

ey = � (x t � xc)sin(� t ) + (yt � yc)cos(� t ) (2)

e� = � t � � c: (3)

Once the path errors are determineda cubic polynomial,
(4), can be usedto satisfy dynamicconstraintsimposedby



Fig. 2. Headinganderror de�nitions.

vehicledynamicsandwaypointpathplanning(i.e. position,
heading,andturning)[1]. Thecubicpolynomialis a function
of thecrosstrackerror, ey , andtheconstantc which dictates
the steepnessof the approach, asseenin Fig. 3.

P(xp) = c(xp)3sign(ey ) (4)

From (4) the approachpath heading angle � p, can be
determined,where � t is the target headingon the desired
path. Once the approachpath headingangle is calculated,
theapproachpathheadingangle canbedirectly usedto steer
the vehiclevia a headingcontroller.

� p = � t � arctan(3c
� ey

c

� 2=3
sign(ey )) (5)

Fig. 3. The effect of the parameterc on the approachpath.

Since the current approachneedsto track to a speci�c
GPSwaypoint at every given time step,a controller for in-
line position tracking is neededas well as for cross-track
position tracking. To extend the controller for in-line error
tracking, a modi�ed bang-bangcontroller (7) is used.The
estimatedstatevelocity of the vehicle is given by

vs = _ex + (2ama x jex j)1=2vb: (6)

where ama x is the maximum acceleration of the vehicle,
andvb is scalarvalue.By modifying thesign functionof the
bang-bangcontroller, the estimatedstate velocity changes
smoothlysatisfyingthe dynamic constraintsof the vehicle.

dvb
dt = � Avb + (B � vb) max(0; ex )

� (D + vb) max(0; � ex )
(7)

This resultsin an accelerationcontrol law of the following
form

acon t r ol =

8
<

:

ama x if vs=dt > ama x

� ama x if vs=dt < � ama x

vs=dt otherwise
: (8)

The result of this control law can be used to control the
speedof the vehicleandtherefore closethe loop aroundthe
in-line patherror.

B. Implementation

The vehicle testing platform is an autonomized2006
Ford EscapeHybrid. The basicsoftwarearchitectureof this
vehicle is presentedin Fig. 4; whereasthe details of the
controllerhardwareimplementationsaredescribed in section
IV-B.1.

Fig. 4. MessagePassingArchitecture(MPA) construct.

Themainsoftwarecomponentsof our autonomousvehicle
systemare composedof a path planner, a path follower,
MessagePassingArchitecture (MPA), several independent
sensordataprocessorsanda few low-level control interfaces.

The backboneof the software architecture is the MPA
which allows hardware and software driven processesto
communicatebetweeneachother by passingmessagesro-
bustly and ef�ciently through the use of sharedmemory.
Thebasicstructureof MPA is a ring-buffer queue,whereall
software processescan independentlyretrieve datachrono-
logically or can insertnew data to the endof the queue.

Theinput to thepathfollowercomesfrom thepathplanner
module,wherea targetpathis speci�ed by a list of waypoints
in the global frame in the form of (9).
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The velocity pro�le (vi ) is assignedto the list of waypoints
basedon hardware and environmental constraintssuch as
availabletorque,pathcurvature,terrain roughnessandposted
speedlimits. Given that the velocity pro�le hasbeendeter-
mined,a time stamp(t i ) is assigned to eachelementof the
waypoint list along the target trajectory.

Thepathplannermodulesendseach waypointof thetarget
path to the path follower basedon the correspondingtime
stamp.Sincethe target waypointsare a set of discretepath
locations,simpletwo-dimensionallinear interpolationbased
on time is usedto generateeachtarget waypointsentto the
path follower.

The in-line and cross-tracktracking errors, (ex ; ey ), are
de�ned by the distancefrom the vehicle's current position
to the target waypointat every time step.Given some�nite
trackingerror, a robustpathfollowermustbeableto generate
a smooth,stableand convergent landing curve to guide the
vehiclebacktowardstheintendedpath. Basedonthetracking
errors,thepathfollower computesthecorrespondinglanding
curve, thenoutputsvelocity (vc) andheading(� c) commands
to the MPA structure.

Thevelocity andsteeringcommandsarepicked up bythe
vehicle's low-level PID controllers.SeparatePID loops for
speedand headingcontrol are implementedin the current
vehicleplatform. The steeringPID controllerdeterminesthe
steering angle basedon input heading angle. While two
separatePID controllers for the acceleratorand the brake
workstogetherto maintainthedesiredvelocity. Additionally,
all low-level hardwarecontrollerPID's arewritten in C/C++
languageswith an averageupdate rateof around100H z.

IV. SIMULATIONS AND EXPERIMENTS

A. Simulation

1) Simulator Overview: The simulation environment
is created using the open source Gazebo Project
(http://playerstage.sourceforge.net/gazebo/gazebo.html).
A snapshotof the simulatorin actionis shown in Fig. 5. A
Gazebovehicle model has beencreatedwith similar mass
properties and acceleration/braking/steeringcharacteristics
as the actualvehicle.

2) SimulatorResults:Given a testpathshown in Fig. 6,
the speedpro�le and the resultinggroundtracksandcross-
track errorsof the simulatedrunsareplotted in Figs.7(a)�
7(c). The speedpro�le in Fig. 7(c) hasbeengeneratedby
limiting theoverall acceleration andmultiplying theresultby
a weighting function proportionalto the inverseof the path
curvature;thusthe lateralaccelerationat cornersarelimited
by prede�ned constants.From Fig.7(b) it is evident that
the cross-trackerror hasmaximummagnitudeof � 0:20m,
while in-line tracking error spans� 1:5m. The reasonthat
the in-line errorsareextremelylarge in comparisonto cross-
track errorsis due to the fact that the vehicle was tunedin
favor of passengercomfort ratherthan trackingaccuracy. By
increasingparameterama x in (8), the trackingaccuracy can
be improved dramatically. Unfortunately, increasingin-line
tracking accuracy resultsin noticeablymore aggressive ac-
celerationandbrakingbehavior of the vehicle.In particular,

Fig. 5. A Snapshotof the Simulator
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Fig. 6. SampleTestPath.

the speedcontrol moduletendsto alternaterapidly between
acceleratingandbrakingmodes.

B. Experiments

1) Control Hardware Overview: The experimentalplat-
form is a Ford EscapeHybrid shown in Fig. 8, which has
beenreverseengineeredfor autonomous control. The exist-
ing core systems(steering,gear shift, accelerator, brakes,
etc.) areactuatedelectronicallywhich allows for easyinter-
facewith andcontrol of thesesystems.

The vehicle is controlled by four custom 16Bit dsPIC
Microcontrollerboards,shown in Fig. 9, which interfacewith
theexisting Ford Escapecomputerhardware.The controllers
are inserted in line, using standardFord parts, to interface
with the existing systemsfor easy installation, repair, or
removal. Four modules are daisy chained together via a
CAN bus andcontrol the gearshift, accelerator, brakes,and
steering.
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(a) Simulation GroundTracks
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(b) SimulationTrackingErrors
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(c) SimulationSpeedPro�le

Fig. 7. Simulationresultstrackingpath in Fig. 6.

Fig. 8. ExperimentalFord EscapeHybrid

Fig. 9. Low Level Control Boards

i. Gear Shift Module: The gear shift module not only
electronicallyselectsthe drive gearof the vehicle; the
modulealsodictateswhetherthe vehicle is in driver or
autonomousmode. This is a designfeaturebuilt into
the systemto quickly switch the vehicle from human
drivermodeto computercontrolled mode.Thegearshift
modulelistenson the vehicle's CAN bus to determine
theshifter positionof thevehicle Whenthevehicleis in
low gearthe computeris able to sendcommands,over
the computerCAN bus, controlling the gear position
andothervehiclesystems.

ii. AcceleratorModule: The acceleratormodule controls
the speed of the vehicle and the turn signals.A RPM
sensorin the transmissiondeterminesthe vehiclespeed
andbroadcaststhe speedon the vehicleCAN bus. The
acceleratormonitors thespeedand usesa PID controller
to maintainvelocity set points dictatedby the vehicle
computer. Theturn signalsareturnedon usinga simple
MOSFET switch that is activated when the module
receives turn signalcommandfrom the computer.

iii. Brake Module: The brake module is responsible for
sendingbrake control signals, and turning the brake
lights on andoff. TheFord Escapebrakesarecontrolled
using PWM pulsesthat incrementand decrementan
internal counter to increaseand decreasethe braking
force.A PID controllerin thebrake modulereceivesset
point commandsfrom thevehicle's computerandsends



pulsesto the vehicle accordingly. The brake lights are
also turnedon using a simple MOSFETswitch that is
activatedwhenthe modulereceivesa brake signal.

iv. SteeringModule: The steeringmodule usesthe power
assistmotor in the Ford Escapeto control the steering
wheel position. A string potentiometerwas addedto
the steeringcolumn to obtain accuratesteeringangles.
The Ford Escapepower assist motor relieson a torque
sensorin the steering systemto determinethe amount
of assist(torque) requiredto move the steeringwheel.
Similar to the brakes, a PID controller in the steering
modulereceivessetpoint commandsfrom thevehicle's
computerandsendstorquevaluesto thevehicle's power
assistmotor accordingly.

2) SensorHardware Overview: The vehicle is localized
using an integratedsenornetwork that utilizes the vehicle
on boarddiagnosticsandthe NovAtel SPAN (Synchronized
PositionAttitude andNavigation) system.

i. On BoardDiagnostics: The Ford EscapeHybrid comes
equippedwith Hall effect sensors on all four wheels
and a transmissionRPM sensortransmit data to the
vehicle CAN bus. The on board diagnostic port on
the vehicle can be used to read the CAN bus which
transmitsvehiclesensordataata rateof 20Hz.Thisdata
is usedfor simple odometryand verifying the current
positionof the vehicle.

ii. NovAtel SPAN: The NovAtel SPAN system inte-
gratesa GPS(NovAtel GPS-702L)andIMU (HG1700
SPAN62). The GPS-702L receivesL-Band frequencies
from the OmniSTAR correction service and receives
updatesat a rateof 10Hz. The HG1700SPAN62 IMU
is a combinedlaserring gyro andaccelerometer with an
updaterateof 100Hz.Combiningthesetwo components
the NovAtel SPAN systemhas a publishedaccuracy of
0.1m anda 10 secondoutageaccuracy of 0.39m.

3) ExperimentalTrials & Results: Fig.10 shows the re-
sults of tracking to the test path in Fig.6 using the current
algorithm in our actual test vehicle. As a result of dis-
crepanciesbetweenvehicle dynamicsand simulator model
dynamics,the maximum cross-track errors have increases
from � 0:20m to � 0:40m for the actual test vehicle runs
while the in-line tracking errors on the actual test vehicle
have remained nearthe samelevels as the simulationruns.

An additional test casewas performed to examine the
performanceof the path tracking algorithm under higher
lateralaccelerationloads.A slalompathasshown in Fig.11
wasgivento thepathfollower to track,theresultsof tracking
a more aggressive path are demonstratedin Fig.12. It is
evident in Fig.12(b) that cross-trackerrors are increased
while in-line trackingerrorsremainunchanged.Theincrease
in cross-trackerror is due to the fact that the currentpath
trackingalgorithmis unableto handlelateralsliding motions
causedby excessive lateralsteeringmotions.
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(a) TestPath GroundTracks
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(b) TestPath TrackingErrors
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(c) TestPath SpeedPro�le

Fig. 10. TestPath TrackingPerformanceResults
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Fig. 11. SlalomPath.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

Thederivation,implementationand testresultsof a robust
and stable path tracking algorithm are presented in this
paper. The current path tracking scheme is well behaved
and has sub-meteraccuracy without the need for detailed
characterizationof vehicle dynamics. Even when pushed
to the limits, as demonstratedin the slalom test case,the
current path tracking algorithm is able to track the target
path,with some sacri�ce in accuracy, but without exhibiting
any undesirableinstabilities.

B. Future Works

As discussed in the conclusion, the in-line tracking con-
troller had a signi�cant negative impact on the accuracy of
the trajectory controller. In light of this fact, future work
will bedoneinvestigatingandusingotherin-line trackingor
velocity control methodsto increasethe performanceof the
existing path trackingcontroller.
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