

WIRELESS COMPUTER CONTROLLED ROBOTICS USING THE

PIC16F77 MICROCONTROLLER

Melonee Wise
Physics 397
Spring 2004

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 2/45

Purpose

The purpose of this project is to develop both a robot and the digital RF control using the
PIC16F77 microcontroller. The specific goals of the project are:

1. A Finished Robot
2. PIC Chip Setup

- Configure the assembler code properly for the PIC16F77 chip.
3. Robot Control Protocol

- Drive motor direction
- Drive motor speed control
- Arm motor control
- Global include file

4. Initialization
- USART
- PWM

5. The Main Program
- Main function
- Send/Receive function
- Decode function
- Drive motor control function
- Arm motor control function

6. Hardware Design
- H-bridges
- RF Setup

7. Visual Basic Program
8. Conclusion and Recommendations

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 3/45

A Finished Robot

 For this project the final robot, Zippy, was built (Figure 1 & Figure 2).

Figure 1 Final Zippy and partner Derek King

Figure 2 Topless Zippy without electronics

 Zippy’s main components consist of:
 3 windshield wiper motors (purchased at Mack’s Auto Recycling)
 2 lawnmower wheels
 4 gears and matching chains
 1” square aluminum tubing (18” x 18” x 8” frame)
 1 robotic arm (see picture)
 1 Pitman motors (donated by the ECE department)
 1 12V SLA battery (Panasonic LC-RD1217P)
 1 yards of rope (for the magnetic lifter)
 1 Tupperware container (to protect the antenna)
 1 magnet
 4 H-bridges

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 4/45

 1 transceiver
Zippy is constructed using 1” square aluminum tubing welded together in to an
18” x 18” x 8” frame. Two drive motors are mounted in the interior to support
plates and electrically isolated, typically windshield wiper motors have grounded
casings and must be isolated to avoid a short across the frame. A drive gear is
attached to each motor and connected by chain to the wheel sprocket. The wheel
gear is attached to the wheel axel that drives the two push type lawnmower
wheels. A third motor is mounted to the interior topside of the frame which
directly drives the arm rotation. A small Pittman motor is used to drive the pulley
of arm which raises and lowers the magnet.

Of the hardware used to construct Zippy only the electrical and computer
components will be discussed within this report because the design of the robot is
not focus of this project.

This is report will continue the work done in Fall 2003 in Physics 344 as part of
my final project, the results of that project can be found at
http://wug.physics.uiuc.edu/courses/phys344/Projects/Fall2003/Digital_Communi
cation_PIC16F84A_Controller_Melonee_Wise_Fall2003.pdf.

Communication Software and Methods

1. PIC Setup

Before beginning the project, the necessary programs must be obtained. MPLAB
can be downloaded for free from http://www.microchip.com and a programmer
and programming software can obtained from http://ramseyelectronics.com. After
the proper software and equipment are obtained the PIC chip must be correctly
configured in MPLAB so that it can be programmed properly and functions
properly when tested. Remember to always read the PIC data sheet before
beginning any project.

First a project must be setup in MPLAB by creating a new project using the
project wizard. The project wizard will step through selecting the proper device
(PIC16F77), the proper language toolsuite (MPASM Assembler), and finally the
project name and directory. Within the project the proper include and linker files
must be added, the include files can be found in the MPLAB_IDE folder under
disPIC_Tools/support/inc and the linker files in the MPLAB_IDE folder under
MCHIP_Tools/Lkr. Finally a main source file must be created for executable
code.

Next it is important to have the proper configuration; this sets the oscillator type,
the watchdog timer, copy protection, and power up timer. For this project, the
main source file is configured in the following manor,

__config _WDT_OFF & _PWRTE_ON & _HS_OSC & _CP_OFF,

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 5/45

this turns the watchdog timer off, the power up timer on, sets the oscillator to high
speed, and turns copy protection off.

2. Movement Protocol

Before starting to create a program that controls Zippy a movement protocol was
developed. The ports were also chosen for control. Some of the protocol listed
was not fully implemented in the end do to time limitations.

Robot message protocol

0; 0UUU|ABCD = drive motor control (first byte)

ABCD=
0000 0 - set spool position
0001 1 - stop motors
0010 2 - pwm motors forward
0011 3 - pwm motors backward
0100 4 - pwm motors turn right
0101 5 - pwm motors turn left
0110 6 - change pwm speed
0110 7 - nothing
1000 8 - stepper stop
1001 9 - stepper set waitc
1010 10 - stepper forward
1011 11 - stepper reverse

1; 0XXX|XXXX = amount low value /right speed (second byte)
2; 0XXX|XXXX = amount high value /left speed (third byte)
3; 0ABC|DEFG = arm control (fourth byte)

 String motor status:

A=0 - not moving
A=1 - moving

 B=0 - moving up
 B=1 - moving down

C=0 piece sensor no down
C=1 piece sensor hit
D=0 magnet sensor not hit
D=1 magnet sensor hit

String motor command:

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 6/45

A=0 don't do anything
A=1 take new command

 B=0 – move up
 C=0 stop at piece
 C=1 stop at magnet
 B=1 – move down

E = 0 arm not moving
 F = 0 arm out
 F = 1 arm in

E = 1 arm moving
 F = 0 moving out
 F = 1 moving in

Ports:

 B0- right motor direction
 0 = forward
 1 = back
 B1- left motor dir
 0 = forward
 1 = back
 B2- string motor control1
 B3- string motor control2
 B4- arm motor control1
 B5- arm motor control2

To simplify the code used to control Zippy a global include file, shown below,
was made that contained many of the variables listed above along with simple
macros for checking parity and moving the message sent.

GLOBAL INCLUDE

;global.inc

MSG_LEN equ 4 ;number of bytes of data in a message (does
not include parity)

;for spi_flags
SPI_MSG_READY_FLAG equ 1 ;message ready to be through SPI to
computer
CMD_MSG_READY_FLAG equ 2 ;message ready to be sent through
usart to robot
SENDING_CMD_FLAG equ 3 ;flag to remember if command
was
 ;being sent USART control

;for motor direction commands
DIR_STOP equ 0

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 7/45

DIR_FORWARD equ 2
DIR_BACKWARD equ 3
DIR_RIGHT equ 4
DIR_LEFT equ 5

;for motor control
RMOTOR_PIN equ 0
LMOTOR_PIN equ 1

;calculates parity of msg, and returns with result in W
calc_parity macro the_msg
 movf the_msg, W
 local i=1
 while i<MSG_LEN
 xorwf (the_msg+i), W
i += 1
 endw
 endm

;copies one message from one place to another in the same bank
copy_msg macro from, to
 local i=0
 while i<MSG_LEN
 movf from+i, W
 movwf to+i
i=i+1
 endw
 endm

;copies one message from one place to another in the same bank
clear_msg macro the_msg
 local i=0
 while i<MSG_LEN
 clrf the_msg+i
i=i+1
 endw
 endm

3. Initialization

One of the biggest difficulties when using a larger PIC chip is initializing the
registers so that the data is moved around correctly between the different memory
banks. Additionally when using a chip with special functions, like PWM and
USART, all of the registers must be configured properly for the chip to work in
the expected manner.

First the USART was initialized using the following code and tested using hyper
term. Three wires were soldered to the GRN, TX, and RX pins as shown below in
Figure 3, and connected to an RS232 chip. To test if this had been done properly
the transmitted data was received and retransmitted to the computer.

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 8/45

1

2
- R

X

3
- T

X 4

5
- G

R
N

6 7 8 9

Serial Port

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10

9

R
S

23
21.

0u
m

1.
0u

m

1.
0u

m

1.0um

+5V

Figure 3 Serial Setup

USART INIT

 processor PIC16F77
 #include "P16F77.INC"

 global usart_init

CODE2 CODE

usart_init:

; SBRG 99h
; 3 gives a baud rate close to 19,231 with a 16MHz clock and
; BRGH=1
 banksel SPBRG
 movlw .51
 movwf SPBRG

; TXSTA 98h
 banksel TXSTA

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 9/45

;7 - CXRC - ? clock source select (does not matter 4 async)
;6 - TX9 - 0 8 bit transmission
;5 - TXEN - 1 enable transmit
;4 - SYNC - 0 async full
;3 - ? - ? blank
;2 - BRGH - 1 high speed baud
;1 - TRMT - 1 transmit is empty
;0 - TX9D - ? 9 bit for transmitting
 movlw B'00100110'
 movwf TXSTA

; RCSTA 18h
 banksel RCSTA
;7 - SPEN - 1 enable serial (overall)
;6 - RX9 - 0 select 8 bit receive (1=9bit, 0=8bit)
;5 - ? - ? don't care in async mode
;4 - CREN - 1 enable continuous recv
;3 - ? - ? nothing
;2 - - 0 no framing error
;1 - - 0 no overrun error
;0 - - 0 9th bit of recv data
 movlw B'10010000'
 movwf RCSTA
 return

 end

Next the PWM was initialized using the following code and tested by calling a
PWM function on the chip and looking at the pin outs with an oscilloscope to see
if the output was correct.

PWM INIT

processor PIC16F77
 #include "P16F77.INC"
 global pwm_init

CODE2 code

pwm_init:
;set the PWM period to about 1kHZ (16 MHz system clock)
;(PR2 is used by timer 2)
 banksel PR2 ;(92h)
 movlw 0xff
 movwf PR2

;set PWM 1&2 duty cycle to 0 to begin with
 banksel CCPR1L
 clrf CCPR1L
 bcf CCP1CON, CCP1X
 bcf CCP1CON, CCP1Y
 clrf CCPR2L
 bcf CCP2CON, CCP2X
 bcf CCP2CON, CCP2Y

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 10/45

;enable Timer2 and set prescale to 16
 banksel T2CON
 bsf T2CON, T2CKPS1 ;1x = 16x prescale
 bsf T2CON, TMR2ON ;1 = timer two is on

;put CCP 1&2 in PWM mode
;CCPxCON(3:0) = 11xx
 bsf CCP1CON, CCP1M3
 bsf CCP1CON, CCP1M2
 bsf CCP2CON, CCP1M3
 bsf CCP2CON, CCP1M2

;TRISC - set PORTC pin 1 & 2 in output mode
;so they can be used as pwm signals
 banksel TRISC
 bcf TRISC, 1 ;pin1 as output
 bcf TRISC, 2 ;pin2 as output
 return

 end

Some testing was also done using the SPI function on the chips. At first it looked
like a good idea to have a second chip between the computer and the robot to do
low level processing but this was not very effective because SPI and USART do
not interface well. Figure 4 shows the setup for using SPI and the code below
was used to initialize the SPI but was not used for controlling Zippy in the end.

Figure 4 SPI (two chip interface) board setup

SPI INIT

 processor PIC16F77

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 11/45

 #include "P16F77.INC"

 global spi_master_init
 global spi_slave_init

CODE0 CODE

spi_master_init:
;5 - 0 SDO - 0 to enable output
;4 - 1 SDI - 1 to enable input
;3 - 0 SCK clock - output for SPI master mode
 banksel TRISC
 bcf TRISC, 5
 bsf TRISC, 4
 bcf TRISC, 3

;SPI setup
;SSPSTAT 94h
;7 - 0 SMP - sample in input middle of data output time
;6 - 1 CKE - set data trans for falling edge of clock when CKP=1
;5 - 0 I2C only
;4 - 0 I2C only
;3 - 0 I2C only
;2 - 0 I2C only
;1 - 0 I2C only
;0 - 0 BF - buffer status bit
 banksel SSPSTAT
 movlw B'01000000'
 movwf SSPSTAT

;SSPCON 14h
;7 - 0 WCOL - write collision flag
;6 - 0 SSPOV - receive overflow indicator
;5 - 1 SSPEN - enable sync serial port
;4 - 1 CKP - set idle clock state high
;3 - 0010 SSPM3:SSPM0 Mastah Mode
 banksel SSPCON
 movlw B'00110010'
 movwf SSPCON

 movf PORTD, W
 movwf SSPBUF

 return

spi_slave_init:
;5 - 0 SDO - 0 to enable output
;4 - 1 SDI - 1 to enable input
;3 - 1 SCK clock - input for SPI slave mode
 banksel TRISC
 bcf TRISC, 5
 bsf TRISC, 4
 bsf TRISC, 3

;SPI setup
;SSPSTAT 94h

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 12/45

;7 - 0 SMP - must be cleared for slave mode
;6 - 1 CKE - set data trans for falling edge of clock when CKP=1
;5 - 0 I2C only
;4 - 0 I2C only
;3 - 0 I2C only
;2 - 0 I2C only
;1 - 0 I2C only
;0 - 0 BF - buffer status bit
 banksel SSPSTAT
 movlw B'01000000'
 movwf SSPSTAT

;SSPCON 14h
;7 - 0 WCOL - write collision flag
;6 - 0 SSPOV - receive overflow indicator
;5 - 1 SSPEN - enable sync serial port
;4 - 1 CKP - set idle clock state high
;3 - 0101 SSPM3:SSPM0 Slave Mode -SS disabled
 banksel SSPCON
 movlw B'00110101'
 movwf SSPCON

 return

 end

4. The Main Program

The main robot control program was comprised of four different sub controls, the
drive motor control, the send/receiver, the arm control, and the message decoder.
One important thing to notice is the use of bank select, it is very important that the
proper bank is selected before trying to jump to a function. Without selecting the
proper bank the chip will malfunction. Also don’t forget to clear the watchdog
timer, if it is not cleared the chip will reset and act very strangely making it hard
to debug.

THE MAIN FUNCTION

 __config (_PWRTE_ON & _WDT_ON & _HS_OSC)

 processor PIC16F77
 #include "P16F77.INC"

 extern recv_mode_init, send_mode_init, sendrecv_init,
sendrecv_run
 extern usart_init

 extern pwm_init

 extern motor_run, motor_init
 extern spool_init, spool_run

INT_FLAG equ 0 ;flags interrupt occurrence

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 13/45

SHARED udata
pclath_temp res 1
status_temp res 1
w_temp res 1

REGS0 udata
this_bank res 0
count1 res 1
count2 res 1
count3 res 1

STARTUP code
 goto init
 goto stop
 goto stop
 goto stop

;################### INTERUPT #######################
isr:
 movwf w_temp ;save context
 swapf STATUS, W
 clrf STATUS
 movwf status_temp
 movf PCLATH, w
 movwf pclath_temp

 banksel this_bank
 pagesel this_page
 ;was there a TIMER OVERFLOW int?
 btfss INTCON, T0IF
 goto not_timer_int
 bcf INTCON, T0IF
 incf count1, F ;increment counters
 incf count2, F
 incf count3, F
not_timer_int:

 movwf pclath_temp ;restore context
 movwf PCLATH
 swapf status_temp, W
 movwf STATUS
 swapf w_temp, F
 swapf w_temp, W
 retfie

CODE0 code
this_page: ;for pagesel

;pic 16f77 initialization code
init:

;first disable all interrupts while initializing
 clrf INTCON

;option_reg 0x81, 0x181

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 14/45

;7 - 1 disable portB pull-ups
;6 - ? int edge
;5 - 0 tmr0 source (instruction clock)
;4 - ? tmr0 edge select
;3 - 1 prescale WDT
;2-0 - 000, 1:1 prescale for wdt
 banksel OPTION_REG
 movlw B'10001000'
 movwf OPTION_REG

;PIE1 - enable bit for peripheral interrupts
;7 - 0 don't enable parallel r/w interrupt
;6 - 0 don't enable A/D conversion interrupt
;5 - 0 disable USART receive enable
;4 - 0 disable USART transmit
;3 - 0 disable synchronous serial port enable
;2 - 0 disable cc1?
;1 - 0 disable timer 2
;0 - 0 disable timer 1
 banksel PIE1
 movlw B'00000000'
 movwf PIE1

;port A setup -
 banksel TRISA
 movlw B'00000000' ;set porta to outputs
 movwf TRISA

;do stuff with ADCON1
 banksel ADCON1
 movlw 0x06 ;configure all PORTA pins as digital
inputs
 movwf ADCON1

;port B setup - make port B an output
 banksel TRISB
 clrf TRISB

;port C setup - setup for USART i/o
 banksel TRISC
 movlw B'11111111'
 movwf TRISC

;port D setup - mask port D input
 banksel TRISD
 movlw B'11111111'
 movwf TRISD

;port E setup - use as outputs
 banksel TRISE
 clrf TRISE

;initialize pwm
 pagesel pwm_init
 call pwm_init

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 15/45

;initialize usart
 pagesel usart_init
 call usart_init

;initialize usart snd/rcv protocol
 pagesel recv_mode_init ;sendrecv_init
 call recv_mode_init ;sendrecv_init

;initialize motor control
 pagesel motor_init
 call motor_init

;initialize spool motor control
 pagesel spool_init
 call spool_init

;reset bank and page
 pagesel this_page
 banksel this_bank
 bankisel this_bank

;INTCON 0x0b 0x8b 0x10b 0x18b
;7 - 1 enable global interrupts
;6 - 0 don't enable peripheral interrupts for now
;5 - 1 enable timer0 overflow interrupt
;4 - 0 don't enable rb0/int external interrupt
;3 - 0 don't enable rb port change interrupt
;2-0 - 000 ;interrupt flags
 movlw B'10100000'
 movwf INTCON

;output crap to ports a just to see if something is going on
 movlw B'11111111'
 movwf PORTA
 movwf PORTB
 movwf PORTE

;clear out timer counts
 banksel this_bank
 clrf count1
 clrf count2

;####################### MAIN ####################
main_loop:
 clrwdt

 movf count1, W
 sublw .4
 btfss STATUS, Z
 goto not_count1
 clrf count1
 pagesel sendrecv_run
 call sendrecv_run
 pagesel this_page
 banksel this_bank
 bankisel this_bank

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 16/45

not_count1:

 movf count2, W
 sublw .16
 btfss STATUS, Z
 goto not_count2
 clrf count2
 pagesel motor_run
 call motor_run
 pagesel spool_run
 call spool_run
 pagesel this_page
 banksel this_bank
 bankisel this_bank
not_count2:

 movf count3, W
 sublw .255
 btfss STATUS, Z
 goto not_count3
 clrf count3
 movlw B'00000001'
 xorwf PORTA, F
not_count3:

 goto main_loop

stop:
 goto stop

 END

The main function basically contains all of the port initializations, the interrupt
service routine, and the basic call routine for sending and receiving data.

SEND/RECEIVE

 processor PIC16F77
 #include "P16F77.INC"

;Send receive message using USART
;use 0xff as a start/escape bit

 #include "global.inc"

DEBUG_PORTA equ PORTA
IN_SEND_BIT equ 3
IN_RECV_BIT equ 2

;for flags
LAST_WAS_FF_FLAG equ 0 ;flags that last byte received was a 0xff
byte

FF_SEND_CYCLES equ .50 ;number of cycles spent send 0xff bytes
before actual message is sent

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 17/45

RECV_CYCLES equ .100 ;number of cycles to wait after
recieving a complete message

 ;for main
 global recv_mode_init, send_mode_init, sendrecv_init,
sendrecv_run

 ;for control file
 global state, msg, waitc
 global send_start, recv_start

 ;from control file
 extern send_complete_f, recv_complete_f, recv_error_f

REGS0 UDATA
this_bank res 0
waitc res 1 ;wait count
flags res 1 ;marks mode that transceiver should be in
bytec res 1 ;byte count
btemp res 1 ;byte temporary value for sending or
recieving from
state res 1 ;address of function to run next
msg res MSG_LEN ;temporary space used when send/recv new
message
parity res 1 ;parity must be right after message

CODE3 code

sendrecv_run:
 banksel this_bank
 bankisel this_bank
 ;indirect goto
 movf state, W
 movwf PCL ;goto state

;###### SEND FUNCTIONS ###### ###### ###### ###### ######

send_start:
 ;start sending out start bit
 bsf DEBUG_PORTA, IN_SEND_BIT

 ;calculate parity for message
 calc_parity msg
 xorlw 0x80
 movwf parity
 movlw MSG_LEN + 1 ;MSG_LEN+1 to send parity
 movwf bytec
 movlw FF_SEND_CYCLES
 movwf waitc
 movlw send_byte_ff
 movwf state

;send 0xff's for a while to allow receiver to lock
send_byte_ff:
 btfss PIR1, TXIF

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 18/45

 goto send_byte_ff_end ;is usart ready to send another byte
 movlw 0xff
 movwf TXREG
send_byte_ff_end:
 decfsz waitc, F
 return
 movlw send_byte
 movwf state

;send actual message
send_byte:
 btfss PIR1, TXIF ;is usart ready to send another byte
 return
 decf bytec, W
 addlw msg
 movwf FSR
 movf INDF, W
 movwf TXREG
 decfsz bytec, F
 return

send_end:
 bcf DEBUG_PORTA, IN_SEND_BIT
 pagesel send_complete_f
 goto send_complete_f

;###### ###### ###### ###### ###### ###### ###### ######
;###### RECEIVE FUNCTIONS ###### ###### ###### ###### ######
; receive uses 0xff as the start bit for transmission
; if the transmission need to send 0xff it should escape it
; with another 0xff

recv_start:
 bsf DEBUG_PORTA, IN_RECV_BIT

 ;set transceiver to receive mode here and wait

 ;setup to wait to receive first byte of data

bcf RCSTA, CREN ;reset usart rcv to clear any errors or
any queued data

 bsf RCSTA, CREN
 clrf bytec ;start out cycle length as 0
 movlw RECV_CYCLES
 movwf waitc
 movlw recv_byte ;set up recv
 movwf state

recv_byte:
 ;check for new data
 btfss PIR1, RCIF
 goto recv_byte_end ;there is no new data
 ;store new data
 movf RCREG, W
 movwf btemp

 ;check to see if new value was 0xff

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 19/45

 comf btemp, W
 btfss STATUS, Z
 goto test_for_start_condition

 ;if new byte was byte was 0xff check old 0xff flags
 btfsc flags, LAST_WAS_FF_FLAG
 goto try_recv_store_byte ;add new 0xff value, clear

flag

 ;set flag don't do anything for now
 bsf flags, LAST_WAS_FF_FLAG
 goto recv_byte_end

test_for_start_condition: ;if new value is not 0xff check to

see if old value was
 btfss flags, LAST_WAS_FF_FLAG
 goto try_recv_store_byte

;if old byte was 0xff but new byte is not, restart message
and store new byte

 movlw MSG_LEN + 1 ;MSG_LEN+1 to recv parity
 movwf bytec

;if bytec is already 0 don't store byte
try_recv_store_byte:
 bcf flags, LAST_WAS_FF_FLAG
 movf bytec, W
 btfsc STATUS, Z
 goto recv_byte_end

store_recv_byte: ;store new byte in msg
 decf bytec, W ;put new data into msg
 addlw msg
 movwf FSR
 movf btemp, W
 movwf INDF
 decfsz bytec, F
 goto recv_byte_end ;message is not complete yet

 ;check parity of received message
 calc_parity msg
 xorwf parity, W
 btfss STATUS, Z ;a correct parity will result with W=0

goto recv_byte_end ;if parity is in error just keep
reading

 ;if partity is correct, a complete message has been receive
 bcf DEBUG_PORTA, IN_RECV_BIT
 pagesel recv_complete_f
 goto recv_complete_f

recv_byte_end:
 ;check to see if time has run out
 decfsz waitc, F ;check to see if message read operation
timed out
 return

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 20/45

 ;there was no valid message receive in the allotted amount
of time
 bcf DEBUG_PORTA, IN_RECV_BIT
 pagesel recv_error_f
 goto recv_error_f

;###### ###### ###### ###### ###### ###### ###### ######
;###### INIT FUNCTIONS ###### ###### ###### ###### ######
recv_mode_init:
 banksel this_bank
 ;set start state
 movlw recv_start
 movwf state
 goto sendrecv_init

send_mode_init:
 banksel this_bank
 ;start in send state for now
 movlw send_start
 movwf state

;general init stuff
sendrecv_init:
 clrf flags
 movf PORTD, W
 movwf TXREG ;send initial value to set trx interrupt
flags
 return

 END

The send/receive function does exactly what is expected, receives data from the
computer and replies with the robots current state. To receive the chip sets the
transceiver in receive mode and waits. Then the function looks for the start byte
of 0xff, once it has received the start byte it starts storing the message to memory.
Once the entire message is stored and the parity is checked, the decoding
function, shown below, is called. One thing to be careful of is the use of jump
tables like the one in the decoding function, because it adds to the PCL. If the
jump table occurs at the end of a bank it could cause a jump to someplace
unintended.

DECODING FUNCTION

 processor PIC16F77
 #include "P16F77.INC"

 #include "global.inc"

 ;from usart
 extern state, msg
 extern send_start, recv_start

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 21/45

 ;for usart
 global send_complete_f, recv_complete_f, recv_error_f

 ;for motor control
 extern motor_dir, dist_l, dist_h, r_speed, l_speed

 ;for stepper control
 ;extern stepper_dist_l, stepper_dist_h, stepper_dir

 extern p_flags, p_waitc

;SHARED udata
;share_msg res MSG_LEN ;used to copy messages
between banks

CODE0 code

;send complete should set up trx chip to wait for a new incoming
message
send_complete_f:
 banksel state
 movlw recv_start
 movwf state
 return

;if there was an error recieving a msg, try recieving again
recv_error_f:
 ;first check if it was a control messgage that was
 ;not responded to...
 banksel state
 bcf PORTA, 1
 ;goto recv_complete_f
 movlw recv_start
 movwf state
 return

;look at decode msg and set up to send reply
recv_complete_f:
 banksel msg
 bsf PORTA, 1
 ;decode message
 movf msg, W
 andlw 0x07
 addwf PCL, F
 ;jump table
 goto set_spool ;0
 goto set_motor_dir ;1
 goto set_motor_dir ;2
 goto set_motor_dir ;3
 goto set_motor_dir ;4
 goto set_motor_dir ;5
 goto set_motor_speed ;6
 goto finish_message ;7

set_spool:
 movf msg+3, W

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 22/45

 andlw 0x07
 movwf p_flags
 movf msg+1, W
 movwf p_waitc
 goto finish_message

;set a new motor direction and distance
set_motor_dir:
 ;set new direction
 movf msg, W
 andlw 0x07
 movwf motor_dir
 ;extract new distance
 movf msg+1, W
 movwf dist_l
 movf msg+2, W
 movwf dist_h
 goto finish_message

;msg[1] = right motor pwm
;msg[2] = left motor pwm
set_motor_speed:
 movf msg+1, W
 movwf r_speed
 movf msg+2, W
 movwf l_speed
 goto finish_message

finish_message:
 ;always reply with current state of robot
 ;no matter what message gets sent
 movf PORTD, W
 movwf msg+3

 ;fill in distance
 movf dist_l, W
 movwf msg+1
 movf dist_h, W
 movwf msg+2

 clrf msg
 movlw send_start
 movwf state
 return

 end

Once the message is decoded it then calls one of two functions to control either
the drive motors or the arm motors. Figures 5 & 6 show the wiring diagram for
the PIC chip with the direction line and PWM line control for the drive motors.

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 23/45

Vpp
RA0
RA1
RA2
RA3
RA4
RA5
RE0
RE1
RE2
Vdd
Vss
OSC1
OSC2
RC0
RC1
RC2
RC3
RD0
RD1

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0
Vdd
Vss

RD7
RD6
RD5
RD4
RC7
RC6
RC5
RC4
RD3
RD2

P
IC

16
F

77

PIN1

PIN2

PIN3

PIN4

PIN5

PIN6

PIN7 PIN8

PIN9

PIN10

PIN11

PIN12

PIN13

PIN14

S
N

74
04

PIN1

PIN2

PIN3

PIN4

PIN5

PIN6

PIN7 PIN8

PIN9

PIN10

PIN11

PIN12

PIN13

PIN14

S
N

74
08

-5V

NA

GRN

V+

OUT

O
S

C

16
.2

5M
H

Z

LEFT MOTOR RIGHT MOTOR

Figure 5 Wiring for direction logic

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 24/45

Figure 6 Actual Wiring

DRIVE MOTOR CONTROL FUNCTION

 processor PIC16F77
 #include "P16F77.INC"

 #include "global.inc"

 ;for usart
 global motor_dir, dist_l, dist_h, r_speed, l_speed
 global motor_run, motor_init

REGS0 udata
this_bank res 1
motor_dir_old res 1
motor_dir res 1
 ;0 = stopped
 ;1 = ?
 ;2 = going forward
 ;3 = going backward
 ;4 = right
 ;5 = left
motor_waitc res 1 ;waitc count before going in next direction
dist_l res 1
dist_h res 1
r_speed res 1
l_speed res 1

PROG1 code

motor_init:
 banksel this_bank
 movlw 1
 movwf motor_waitc
 clrf dist_l
 clrf dist_h
 clrf motor_dir
 clrf motor_dir_old
 movlw 0x7f

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 25/45

 movwf r_speed
 movwf l_speed
 return

;check for motor control change
motor_run:
 banksel this_bank
 ;do not update motor until wait is up
 decfsz motor_waitc, F
 return
 incf motor_waitc, F

 ;see if motor direction changed
 movf motor_dir, W
 subwf motor_dir_old, W
 btfss STATUS, Z
 goto change_motor_dir

 movf motor_dir_old, W
 andlw 0x07
 addwf PCL, F
 goto motor_stop ;0
 goto motor_stop ;1
 goto motor_forward ;2
 goto motor_backward ;3
 goto motor_right ;4
 goto motor_left ;5
 goto motor_stop ;6
 goto motor_stop ;7

motor_forward:
 bcf PORTB, RMOTOR_PIN
 bcf PORTB, LMOTOR_PIN
 goto motor_speed_check

motor_backward:
 bsf PORTB, RMOTOR_PIN
 bsf PORTB, LMOTOR_PIN
 goto motor_speed_check

motor_right:
 bsf PORTB, RMOTOR_PIN
 bcf PORTB, LMOTOR_PIN
 goto motor_speed_check

motor_left:
 bcf PORTB, RMOTOR_PIN
 bsf PORTB, LMOTOR_PIN
 goto motor_speed_check
 ;set pins based on motor direction

motor_speed_check:
 ;update motor speed here
 movf r_speed, W
 movwf CCPR1L
 movf l_speed, W

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 26/45

 movwf CCPR2L

 ;check distance count
 decfsz dist_l, F
 return
 decfsz dist_h, F
 return
 ;stop motors because movement is done

motor_stop:
 clrf motor_dir

change_motor_dir:
 ;stop motors and set wait before they start again
 movf motor_dir, W
 movwf motor_dir_old
 clrf CCPR1L
 clrf CCPR2L
 movlw 10
 movwf motor_waitc
 return

 end

This function uses a jump table to jump to the correct function to direct Zippy. A
build in “distance” or more correctly time is used to stop the robot from running
infinitely if the chip malfunctions.

ARM MOTOR CONTROL FUNCTION

 processor PIC16F77
 #include "P16F77.INC"

 #include "global.inc"

 ;for usart
 global p_flags, p_waitc
 global spool_init, spool_run

P_MOVE_FLAG equ 2
P_DIR_FLAG equ 1
P_STOP_FLAG equ 0

REGS0 udata
this_bank res 0
p_flags res1 ;flags for deciding what to do with pulley
p_waitc res 1 ;wait for lowering pulley

PROG1 code

spool_init:
 banksel this_bank
 clrf p_flags
 clrf p_waitc
 return

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 27/45

;check for motor control change
spool_run:
 banksel this_bank

 ;is the pulley supposed to be moving?
 btfss p_flags, P_MOVE_FLAG
 goto stop

 ;check count down
 decfsz p_waitc, F
 goto no_stop
 goto stop

no_stop:
 ;which direction is the pulley moving in?
 btfss p_flags, P_DIR_FLAG
 goto move_up

 ;pulley is moving down - check count
 bcf PORTB, 2
 bsf PORTB, 3
 return

move_up:
 bcf PORTB, 3
 bsf PORTB, 2
 ;stop no matter what, when switch 1 hits
 btfsc PORTD, 0
 goto stop

 ;if flag is set for piece stop then stop there
 btfss p_flags, P_STOP_FLAG
 return
 btfss PORTD, 0
 return

stop:

;stop pulley movement
 bcf p_flags, P_MOVE_FLAG
 bcf PORTB, 2
 bcf PORTB, 3
 return

 end

Control Hardware and Methods

1. H-bridges

Zippy was controlled using three H-bridges, the rotation motor for Zippy’s arm
was not implemented because of time constraints but a fourth H-bridge can be
added and controlled using the code developed above. The H-bridges used for the

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 28/45

finished Zippy are very similar to the ones used in the prototype. High slew rate
op-amps were added to limit the amount of time spent in the transition state of the
mosfet preventing shoot thru current.

The board layouts were created using EASYTRAX, this software can be obtained
from http://www.ece.uiuc.edu/eshop/pcbdesign/. This website also covers where
and how to get PCB board cut on campus. Figure 7 shows a built up PCB board
used for Zippy’s motor control.

Figure 7 H-bridge board used to control Zippy

As can be seen in the picture two mosfets were piggybacked on top of each other
to increase the current load possible for the mosfet. This also helped to dissipate
some of the heat that is created from the imperfect switching of the mosfets.
Figure 8 shows the wring layout of the above PCB board.

These boards were stacked together in a project box and connected to power and
the batteries. Figure 9 shows the boards together in the project box, the project
box was used to shield RF from the noise.

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 29/45

1
2
3
4
5
6
7
8 9

10
11
12
13
14
15
16

O
p

to
is

o
 P

S
25

01

470

470

470

470

270

270

270

270

1
2
3
4 5

6
7
8

L
M

74
1

1
2
3
4 5

6
7
8

L
M

74
1

1
2
3
4 5

6
7
8

L
M

74
1

1
2
3
4 5

6
7
8

L
M

74
1

22K

22K

G

D

S

IR
F

51
0

G

D

S

IR
F

51
0

G

D

S

IR
F

95
20

G

D

S

IR
F

95
20

+12V

MOTOR V+

MOTOR GRN

Figure 8 Wiring Diagram

Figure 9 Project box with PCB boards

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 30/45

2. RF Setup

The RF transceivers were setup to take serial input from the computer and
transmit it to the PIC chip which controlled Zippy. Figure 10 shows the RF wiring
diagram for the transmit side connected to the computer.

1

2
-

R
X

3
- T

X 4

5
- G

R
N

6 7 8 9

Serial Port

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10

9

R
S

23
21.

0u
m

1.
0u

m

1.
0u

m

1.0um

1
2
3
4
5
6
7
8
9
10 11

12
13
14
15
16
17
18
19
20

LINX SC-PA

A
N

T

+5V

Figure 10 Transmitter Setup

Figure 11 shows the wiring diagram for the receiving end.

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 31/45

Vpp
RA0
RA1
RA2
RA3
RA4
RA5
RE0
RE1
RE2
Vdd
Vss
OSC1
OSC2
RC0
RC1
RC2
RC3
RD0
RD1

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0
Vdd
Vss

RD7
RD6
RD5
RD4
RC7
RC6
RC5
RC4
RD3
RD2

P
IC

16
F

77

PIN1

PIN2

PIN3

PIN4

PIN5

PIN6

PIN7 PIN8

PIN9

PIN10

PIN11

PIN12

PIN13

PIN14

S
N

74
04

PIN1

PIN2

PIN3

PIN4

PIN5

PIN6

PIN7 PIN8

PIN9

PIN10

PIN11

PIN12

PIN13

PIN14

S
N

74
08

-5V

NA

GRN

V+

OUT

O
S

C

16
.2

5M
H

Z

1
2
3
4
5
6
7
8
9
10 11

12
13
14
15
16
17
18
19
20

LINX SC-PA

A
N

T
LEFT MOTOR RIGHT MOTOR

Figure 11 Receiver Setup

Visual Basic Program

The following code was used to drive zippy around using a standard USB
joystick.

VERSION 5.00
Object = "{648A5603-2C6E-101B-82B6-000000000014}#1.1#0"; "MSCOMM32.OCX"
Begin VB.Form main_form
 Caption = "Robot Control"
 ClientHeight = 9225

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 32/45

 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 9570
 LinkTopic = "Form1"
 ScaleHeight = 9225
 ScaleWidth = 9570
 StartUpPosition = 3 'Windows Default
 Begin VB.Frame button
 Caption = "Button Control"
 Height = 4455
 Left = 2640
 TabIndex = 16
 Top = 4560
 Width = 6375
 Begin VB.CommandButton forward
 Caption = "forward"
 Height = 855
 Left = 1320
 TabIndex = 31
 Top = 360
 Width = 855
 End
 Begin VB.CommandButton left
 Caption = "left"
 Height = 855
 Left = 480
 TabIndex = 30
 Top = 1200
 Width = 855
 End
 Begin VB.CommandButton right
 Caption = "right"
 Height = 855
 Left = 2160
 TabIndex = 29
 Top = 1200
 Width = 855
 End
 Begin VB.CommandButton back
 Caption = "back"
 Height = 855
 Left = 1320
 TabIndex = 28
 Top = 2040
 Width = 855
 End
 Begin VB.CommandButton stop
 Caption = "stop"
 Height = 855
 Left = 1320
 TabIndex = 27
 Top = 1200
 Width = 855
 End
 Begin VB.CommandButton speed
 Caption = "Set Speed"

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 33/45

 Height = 615
 Left = 3600
 TabIndex = 26
 Top = 360
 Width = 735
 End
 Begin VB.TextBox rf_speed
 Height = 375
 Left = 3600
 TabIndex = 25
 Text = "Text1"
 Top = 1200
 Width = 1215
 End
 Begin VB.TextBox rb_speed
 Height = 375
 Left = 3600
 TabIndex = 24
 Text = "Text1"
 Top = 1680
 Width = 1215
 End
 Begin VB.TextBox lf_speed
 Height = 375
 Left = 3600
 TabIndex = 23
 Text = "Text1"
 Top = 2160
 Width = 1215
 End
 Begin VB.TextBox lb_speed
 Height = 375
 Left = 3600
 TabIndex = 22
 Text = "Text1"
 Top = 2640
 Width = 1215
 End
 Begin VB.CommandButton up
 Caption = "up"
 Height = 495
 Left = 360
 TabIndex = 21
 Top = 3000
 Width = 855
 End
 Begin VB.CommandButton down
 Caption = "down"
 Height = 495
 Left = 360
 TabIndex = 20
 Top = 3600
 Width = 855
 End
 Begin VB.TextBox spool_dist
 Height = 495

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 34/45

 Left = 1320
 TabIndex = 19
 Text = "Text1"
 Top = 3600
 Width = 975
 End
 Begin VB.CommandButton pstop
 Caption = "stop"
 Height = 495
 Left = 2400
 TabIndex = 18
 Top = 3000
 Width = 975
 End
 Begin VB.CommandButton up2mag
 Caption = "up2mag"
 Height = 495
 Left = 1320
 TabIndex = 17
 Top = 3000
 Width = 975
 End
 Begin VB.Label Label1
 Caption = "Right Forward"
 Height = 375
 Left = 4920
 TabIndex = 35
 Top = 1200
 Width = 1095
 End
 Begin VB.Label Label2
 Caption = "Right Back"
 Height = 375
 Left = 4920
 TabIndex = 34
 Top = 1680
 Width = 1095
 End
 Begin VB.Label Label3
 Caption = "Left Forward"
 Height = 375
 Left = 4920
 TabIndex = 33
 Top = 2160
 Width = 1095
 End
 Begin VB.Label Label4
 Caption = "Left Back"
 Height = 375
 Left = 4920
 TabIndex = 32
 Top = 2640
 Width = 1095
 End
 End
 Begin VB.Frame joystick

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 35/45

 Caption = "Joystick"
 Height = 4335
 Left = 2640
 TabIndex = 4
 Top = 120
 Width = 6375
 Begin VB.TextBox joy_rvel
 Height = 375
 Left = 2400
 TabIndex = 37
 Text = "Right Vel"
 Top = 3600
 Width = 855
 End
 Begin VB.TextBox joy_lvel
 Height = 375
 Left = 1440
 TabIndex = 36
 Text = "Left Vel"
 Top = 3600
 Width = 855
 End
 Begin VB.TextBox joy_y
 Height = 375
 Left = 1560
 TabIndex = 15
 Text = "Y"
 Top = 2160
 Width = 735
 End
 Begin VB.TextBox joy_x_center
 Height = 375
 Left = 2400
 TabIndex = 14
 Text = "X MID"
 Top = 1680
 Width = 735
 End
 Begin VB.TextBox joy_x
 Height = 375
 Left = 1560
 TabIndex = 13
 Text = "X"
 Top = 1680
 Width = 735
 End
 Begin VB.TextBox joy_y_max
 Height = 375
 Left = 2040
 TabIndex = 12
 Text = "YMAX"
 Top = 2640
 Width = 735
 End
 Begin VB.TextBox joy_num
 Height = 375

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 36/45

 Left = 3600
 TabIndex = 10
 Text = "X"
 Top = 600
 Width = 375
 End
 Begin VB.CommandButton joy_start
 Caption = "Initialize Joystick"
 Height = 375
 Left = 1080
 TabIndex = 9
 Top = 600
 Width = 1455
 End
 Begin VB.TextBox joy_y_center
 Height = 375
 Left = 2400
 TabIndex = 8
 Text = "Y MID"
 Top = 2160
 Width = 735
 End
 Begin VB.TextBox joy_x_max
 Height = 375
 Left = 3240
 TabIndex = 7
 Text = "XMAX"
 Top = 1920
 Width = 735
 End
 Begin VB.TextBox joy_x_min
 Height = 375
 Left = 720
 TabIndex = 6
 Text = "XMIN"
 Top = 1920
 Width = 735
 End
 Begin VB.TextBox joy_y_min
 Height = 375
 Left = 2040
 TabIndex = 5
 Text = "YMIN"
 Top = 1200
 Width = 735
 End
 Begin VB.Label Label5
 Caption = "Joystick #"
 Height = 255
 Left = 2760
 TabIndex = 11
 Top = 720
 Width = 855
 End
 End
 Begin VB.CommandButton quit

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 37/45

 Caption = "quit"
 Height = 615
 Left = 120
 TabIndex = 2
 Top = 1680
 Width = 615
 End
 Begin VB.CommandButton run
 Caption = "run"
 Height = 615
 Left = 120
 TabIndex = 0
 Top = 840
 Width = 615
 End
 Begin MSCommLib.MSComm MSComm1
 Left = 120
 Top = 120
 _ExtentX = 1005
 _ExtentY = 1005
 _Version = 393216
 DTREnable = 0 'False
 OutBufferSize = 5
 BaudRate = 19200
 End
 Begin VB.Label runinfo
 Caption = "runinfo"
 Height = 375
 Left = 1200
 TabIndex = 3
 Top = 960
 Width = 1095
 End
 Begin VB.Label info
 Caption = "info"
 Height = 375
 Left = 1200
 TabIndex = 1
 Top = 1800
 Width = 1095
 End
End
Attribute VB_Name = "main_form"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Dim f As Boolean
Dim r As Boolean
Dim l As Boolean
Dim b As Boolean
Dim upb As Boolean
Dim downb As Boolean
Dim upup As Boolean
Dim quitflag As Boolean

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 38/45

Const USE_BUTTONS = 0
Const USE_JOYSTICK = 1
Dim input_type As Integer

Option Explicit
Private Declare Function joyGetDevCaps Lib "winmm.dll" Alias
"joyGetDevCapsA" (ByVal id As Long, lpCaps As joycaps, ByVal uSize As
Long) As Long
Private Declare Function joyGetPos Lib "winmm.dll" (ByVal uJoyID As
Long, pji As JoyInfo) As Long

Const MAXPNAMELEN = 32

Private Type joycaps
 wMid As Integer
 wPid As Integer
 szPname As String * MAXPNAMELEN
 wXmin As Long
 wXmax As Long
 wYmin As Long
 wYmax As Long
 wZmin As Long
 wZmax As Long
 wNumButtons As Long
 wPeriodMin As Long
 wPeriodMax As Long
End Type

Private Type JoyInfo
 wXpos As Long
 wYpos As Long
 wZpos As Long
 wButtons As Long
End Type

'Joystick error codes and return values
Const JOYERR_NOERROR = 0
Const JOYERR_BASE As Long = 160
Const JOYERR_UNPLUGGED As Long = (JOYERR_BASE + 7)
Const MMSYSERR_BASE As Long = 0
Const MMSYSERR_NODRIVER As Long = (MMSYSERR_BASE + 6)
Const MMSYSERR_INVALPARAM As Long = (MMSYSERR_BASE + 11)
Const joystick1 As Long = &H0
Const JOYSTICK2 As Long = &H1
Const JOY_BUTTON2 = &H2
Const JOY_BUTTON1 = &H1

Private Type joystick
 x_max As Long
 y_max As Long
 x_min As Long
 y_min As Long
 x_center As Long
 y_center As Long

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 39/45

End Type

Dim js As joystick

Sub InitJoystick()
 Dim rt As Long
 Dim JoyInformation As JoyInfo
 Dim JoyStickCaps As joycaps

 'set joystick range
 joyGetDevCaps joystick1, JoyStickCaps, Len(JoyStickCaps)
 With JoyStickCaps
 'js.x_max = .wXmax
 'js.x_min = .wXmin
 'js.y_max = .wYmax
 'js.y_min = .wYmin
 joy_x_max.Text = .wXmax
 joy_x_min.Text = .wXmin
 joy_y_max.Text = .wYmax
 joy_y_min.Text = .wYmin
 End With

 'center joystick
 joyGetPos joystick1, JoyInformation
 'js.x_center = JoyInformation.wXpos
 'js.y_center = JoyInformation.wYpos
 joy_x_center.Text = JoyInformation.wXpos
 joy_y_center.Text = JoyInformation.wYpos

 input_type = USE_JOYSTICK

End Sub

Sub SendCommand(command As Integer, dist_l As Integer, dist_h As
Integer, other As Integer)
 Dim parity As Integer
 Dim msg As String
 Dim index As Integer

 If MSComm1.PortOpen = False Then
 MSComm1.PortOpen = True
 End If

 'send message start byte
 MSComm1.Output = Chr(255) + Chr(127) + Chr(255)

 'calculate message parity
 parity = (command Xor dist_l Xor dist_h Xor other)

 msg = Chr(parity) + Chr(other) + Chr(dist_h) + Chr(dist_l) +
Chr(command)

 For index = 1 To Len(msg)
 MSComm1.Output = Mid(msg, index, 1)
 If Mid(msg, index, 1) = Chr(255) Then
 MSComm1.Output = Chr(255)

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 40/45

 End If
 Next index

End Sub

Sub GetButtons()
 'Uses the position of the form buttons
 'to control the robot's movements
 If f = True Then
 Call SendCommand(2, 80, 2, 0)
 info.Caption = "forward"
 ElseIf b = True Then
 Call SendCommand(3, 80, 2, 0)
 info.Caption = "backward"
 ElseIf r = True Then
 Call SendCommand(4, 80, 2, 0)
 info.Caption = "right"
 ElseIf l = True Then
 Call SendCommand(5, 80, 2, 0)
 info.Caption = "left"
 ElseIf upb = True Then
 If Not IsNumeric(spool_dist.Text) Then
 spool_dist.Text = "127"
 End If
 Call SendCommand(0, CByte(spool_dist.Text), 0, 4)
 info.Caption = "up"
 ElseIf upup = True Then
 If Not IsNumeric(spool_dist.Text) Then
 spool_dist.Text = "127"
 End If
 Call SendCommand(0, CByte(spool_dist.Text), 0, 5)
 info.Caption = "upup"
 ElseIf downb = True Then
 If Not IsNumeric(spool_dist.Text) Then
 spool_dist.Text = "127"
 End If
 Call SendCommand(0, CByte(spool_dist.Text), 0, 6)
 info.Caption = "down"
 Else
 info.Caption = "none"
 End If
End Sub

Sub GetJoystick()
 Dim FVel As Double, TVel As Double, RVel As Double, LVel As Double
 Dim JoyInformation As JoyInfo
 Dim RightForward As Boolean, LeftForward As Boolean

 joyGetPos joystick1, JoyInformation

 TVel = JoyInformation.wXpos - CLng(joy_x_center.Text)
 FVel = JoyInformation.wYpos - CLng(joy_y_center.Text)

 If FVel > 0 Then
 FVel = FVel / (CLng(joy_y_max.Text) - CLng(joy_y_center.Text))
 Else

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 41/45

 FVel = FVel / (CLng(joy_y_center.Text) - CLng(joy_y_min.Text))
 End If

 If TVel > 0 Then
 TVel = TVel / (CLng(joy_x_max.Text) - CLng(joy_x_center.Text))
 Else
 TVel = TVel / (CLng(joy_x_center.Text) - CLng(joy_x_min.Text))
 End If

 joy_x.Text = TVel
 joy_y.Text = FVel

 RVel = (FVel + TVel) * 255 'use waiting here
 LVel = (FVel - TVel) * 255

 LeftForward = False
 If (LVel < 0) Then
 LeftForward = True
 End If
 LVel = Abs(LVel)

 RightForward = False
 If (RVel < 0) Then
 RightForward = True
 End If
 RVel = Abs(RVel)

 If (LVel > 255) Then
 LVel = 255
 End If

 If (RVel > 255) Then
 RVel = 255
 End If

 'send robot new speed to operate at
 Call SendCommand(6, CByte(RVel), CByte(LVel), 0)

 If LVel + RVel > 1 Then
 'send robot new direction to run at
 If LeftForward And RightForward Then
 info.Caption = "forward"
 Call SendCommand(2, 80, 2, 0)
 ElseIf LeftForward And Not RightForward Then
 info.Caption = "right"
 Call SendCommand(5, 80, 2, 0)
 ElseIf Not LeftForward And RightForward Then
 info.Caption = "left"
 Call SendCommand(4, 80, 2, 0)
 Else
 info.Caption = "reverse"
 Call SendCommand(3, 80, 2, 0)
 End If
 Else
 Call SendCommand(1, 0, 0, 0)
 info.Caption = "stop"

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 42/45

 End If

 joy_rvel.Text = RVel
 joy_lvel.Text = LVel

End Sub

Sub RunApp()
 Dim command As Integer

 quitflag = False

 Do Until quitflag = True
 runinfo.Caption = "runnning"

 If MSComm1.OutBufferCount < 3 Then 'do not overwelm the
serial output
 If input_type = USE_JOYSTICK Then
 Call GetJoystick
 Else
 Call GetButtons
 End If
 End If
 DoEvents
 Loop

 info.Caption = "stopped"
 runinfo.Caption = "stopped"
End Sub

Private Sub back_MouseDown(button As Integer, Shift As Integer, X As
Single, Y As Single)
 b = True
End Sub

Private Sub back_MouseUp(button As Integer, Shift As Integer, X As
Single, Y As Single)
 b = False
End Sub

Private Sub Command1_Click()

End Sub

Private Sub down_MouseDown(button As Integer, Shift As Integer, X As
Single, Y As Single)
 downb = True
End Sub

Private Sub down_MouseUp(button As Integer, Shift As Integer, X As
Single, Y As Single)
 downb = False
End Sub

Private Sub forward_MouseDown(button As Integer, Shift As Integer, X As
Single, Y As Single)

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 43/45

 'Call SendCommand(2, 500, 0)
 f = True
End Sub

Private Sub forward_MouseUp(button As Integer, Shift As Integer, X As
Single, Y As Single)
 f = False
End Sub

Private Sub joy_DragDrop(Source As Control, X As Single, Y As Single)

End Sub

Private Sub joy_start_Click()
 Call InitJoystick
End Sub

Private Sub left_MouseDown(button As Integer, Shift As Integer, X As
Single, Y As Single)
 l = True
End Sub

Private Sub left_MouseUp(button As Integer, Shift As Integer, X As
Single, Y As Single)
 l = False
End Sub

Private Sub pstop_Click()
 Call SendCommand(0, 0, 0, 0)
End Sub

Private Sub quit_Click()
 quitflag = True
End Sub

Private Sub right_MouseDown(button As Integer, Shift As Integer, X As
Single, Y As Single)
 r = True
End Sub

Private Sub right_MouseUp(button As Integer, Shift As Integer, X As
Single, Y As Single)
 r = False
End Sub

Private Sub run_Click()
 Call RunApp
End Sub

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 44/45

Private Sub speed_Click()
 If Not IsNumeric(rf_speed.Text) Then
 rf_speed.Text = "127"
 End If

 If Not IsNumeric(lf_speed.Text) Then
 lf_speed.Text = "127"
 End If

 Call SendCommand(6, CByte(rf_speed.Text), CByte(lf_speed.Text), 0)

End Sub

Private Sub stop_Click()
 MSComm1.OutBufferCount = 0
 Call SendCommand(1, 0, 0, 0)
End Sub

Private Sub Text3_Change()

End Sub

Private Sub up_Click()
 Call SendCommand(0, 0, 0, 4)
End Sub

Private Sub up_MouseDown(button As Integer, Shift As Integer, X As
Single, Y As Single)
 upb = True
End Sub

Private Sub up_MouseUp(button As Integer, Shift As Integer, X As
Single, Y As Single)
 upb = False
End Sub

Private Sub up2mag_Click()
 Call SendCommand(0, 0, 0, 5)
End Sub

Private Sub up2mag_MouseDown(button As Integer, Shift As Integer, X As
Single, Y As Single)
 upup = True
End Sub

Private Sub up2mag_MouseUp(button As Integer, Shift As Integer, X As
Single, Y As Single)
 upup = False
End Sub

Physics 397 Spring 2004 Physics Department, University of Illinois
Computer Controlled Robotics By Melonee Wise Advisor: Steve Errede

Page 45/45

Conclusion

Here are a few brief words on my experience and recommendations if trying to do
this project. I had a really great time working on this project although I wish I had
more knowledge about other chips and hardware on the market. I guess one of the
biggest problems in working on this project was having the right equipment to do
the task at hand. The most important piece of equipment you need when trying to
do communication is a digital oscilloscope. Do not try to start a project like this
without one. Also make sure you have a good understanding of the chips data
sheet and the specialty functions. I spent a lot of time trying to configure the chip
properly which made me really frustrated and discouraged at times. Finally if the
problem seems to be too hard then it probably is because you do not understand
something or you made it that way. And always remember to start out small and
learn how to use the hardware before trying to do cool things with it.

